Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.212
Filtrar
1.
Physiol Plant ; 176(2): e14278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644530

RESUMO

Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.


Assuntos
Metilação de DNA , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metilação de DNA/genética , Epigênese Genética , Reguladores de Crescimento de Plantas/metabolismo , Epigenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Physiol Plant ; 176(2): e14288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644531

RESUMO

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP20 , Malus , Filogenia , Doenças das Plantas , Proteínas de Plantas , Malus/genética , Malus/microbiologia , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Ascomicetos/fisiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Família Multigênica , Resistência à Doença/genética , Antocianinas/metabolismo
3.
Planta ; 259(4): 86, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453695

RESUMO

MAIN CONCLUSION: MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.


Assuntos
Ascomicetos , Malus , Malus/metabolismo , Resistência à Doença/genética , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia
4.
New Phytol ; 242(3): 1218-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481030

RESUMO

Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Nitrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Physiol Plant ; 176(2): e14238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488414

RESUMO

Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Multiômica , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
6.
Commun Biol ; 7(1): 359, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519651

RESUMO

Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.


Assuntos
Basidiomycota , Malus , Penicillium , Malus/genética , Malus/metabolismo , Malus/microbiologia , Saccharomyces cerevisiae/genética , Perfilação da Expressão Gênica
7.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483998

RESUMO

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Assuntos
Ascomicetos , Micovírus , Malus , Micoses , Vírus de RNA , Ascomicetos/genética , Vírus de RNA/genética , Doenças das Plantas/microbiologia , Malus/metabolismo
8.
New Phytol ; 242(3): 1238-1256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426393

RESUMO

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Assuntos
Malus , Polifenóis , Malus/metabolismo , Florizina/metabolismo , Flavonoides/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
9.
Sci Rep ; 14(1): 4933, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418625

RESUMO

Red flesh apple (Malus pumila var. medzwetzkyana Dieck), purple leaf plum (Prunus cerasifera Ehrhar f), and purple leaf peach (Prunus persica 'Atropurpurea') are significant ornamental plants within the Rosaceae family. The coloration of their fruits and leaves is crucial in their appearance and nutritional quality. However, qualitative and quantitative studies on flavonoids in the succulent fruits and leaves of multicolored Rosaceae plants are lacking. To unveil the diversity and variety-specificity of flavonoids in these three varieties, we conducted a comparative analysis of flavonoid metabolic components using ultra-high-performance liquid phase mass spectrometry (UPLC-MS/MS). The results revealed the detection of 311 metabolites, including 47 flavonoids, 105 flavonols, 16 chalcones, 37 dihydroflavonoids, 8 dihydroflavonols, 30 anthocyanins, 14 flavonoid carbon glycosides, 23 flavanols, 8 isoflavones, 11 tannins, and 12 proanthocyanidins. Notably, although the purple plum and peach leaves exhibited distinct anthocyanin compounds, paeoniflorin and corythrin glycosides were common but displayed varying glycosylation levels. While the green purple leaf peach fruit (PEF) and red flesh apple leaf (AL) possessed the lowest anthocyanin content, they exhibited the highest total flavonoid content. Conversely, the red flesh apple fruit (AF) displayed the highest anthocyanin content and a diverse range of anthocyanin glycosylation modifications, indicating that anthocyanins predominantly influenced the fruit's color. Purple PLF, PLL, and PEL showcased varying concentrations of anthocyanins, suggesting that their colors result from the co-color interaction between specific types of anthocyanins and secondary metabolites, such as flavonols, flavonoids, and dihydroflavonoids. This study provides novel insights into the variations in tissue metabolites among Rosaceae plants with distinct fruit and leaf colors.


Assuntos
Malus , Prunus persica , Rosaceae , Antocianinas/metabolismo , Frutas/metabolismo , Rosaceae/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Folhas de Planta/metabolismo , Flavonoides/metabolismo , Malus/metabolismo , Flavonóis/metabolismo , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339057

RESUMO

The red flesh coloration of apples is a result of a biochemical pathway involved in the biosynthesis of anthocyanins and anthocyanidins. Based on apple genome analysis, a high number of regulatory genes, mainly transcription factors such as MYB, which are components of regulatory complex MYB-bHLH-WD40, and several structural genes (PAL, 4CL, CHS, CHI, F3H, DFR, ANS, UFGT) involved in anthocyanin biosynthesis, have been identified. In this study, we investigated novel genes related to the red-flesh apple phenotype. These genes could be deemed molecular markers for the early selection of new apple cultivars. Based on a comparative transcriptome analysis of apples with different fruit-flesh coloration, we successfully identified and characterized ten potential genes from the plant hormone transduction pathway of auxin (GH3); cytokinins (B-ARR); gibberellins (DELLA); abscisic acid (SnRK2 and ABF); brassinosteroids (BRI1, BZR1 and TCH4); jasmonic acid (MYC2); and salicylic acid (NPR1). An analysis of expression profiles was performed in immature and ripe fruits of red-fleshed cultivars. We have uncovered genes mediating the regulation of abscisic acid, salicylic acid, cytokinin, and jasmonic acid signaling and described their role in anthocyanin biosynthesis, accumulation, and degradation. The presented results underline the relationship between genes from the hormone signal transduction pathway and UFGT genes, which are directly responsible for anthocyanin color transformation as well as anthocyanin accumulation during apple-fruit ripening.


Assuntos
Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
J Nanobiotechnology ; 22(1): 68, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369472

RESUMO

BACKGROUND: Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS: The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS: We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.


Assuntos
Antioxidantes , Malus , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cálcio/metabolismo , Verduras , Proteômica , Malus/metabolismo , Transdução de Sinais
12.
Plant Sci ; 341: 112008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307352

RESUMO

miRNAs govern gene expression and regulate plant defense. Alternaria alternata is a destructive fungal pathogen that damages apple. The wild apple germplasm Malus hupehensis is highly resistant to leaf spot disease caused by this fungus. Herein, we elucidated the regulatory and functional role of miR393a in apple resistance against A. alternata by targeting Transport Inhibitor Response 1. Mature miR393 accumulation in infected M. hupehensis increased owing to the transcriptional activation of MIR393a, determined to be a positive regulator of A. alternata resistance to either 'Orin' calli or 'Gala' leaves. 5' RLM-RACE and co-transformation assays showed that the target of miR393a was MhTIR1, a gene encoding a putative F-box auxin receptor that compromised apple immunity. RNA-seq analysis of transgenic calli revealed that MhTIR1 upregulated auxin signaling gene transcript levels and influenced phytohormone pathways and plant-pathogen interactions. miR393a compromised the sensitivity of several auxin-signaling genes to A. alternata infection, whereas MhTIR1 had the opposite effect. Using exogenous indole-3-acetic acid or the auxin synthesis inhibitor L-AOPP, we clarified that auxin enhances apple susceptibility to this pathogen. miR393a promotes SA biosynthesis and impedes pathogen-triggered ROS bursts by repressing TIR1-mediated auxin signaling. We uncovered the mechanism underlying the miR393a-TIR1 module, which interferes with apple defense against A. alternata by modulating the auxin signaling pathway.


Assuntos
Malus , Malus/metabolismo , Alternaria/fisiologia , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
13.
Plant Physiol Biochem ; 207: 108314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184884

RESUMO

Calcium is an essential element for plant growth and development, and it plays an important role in the responses of plants to abiotic stress. High concentrations of heavy metal ions in soil significantly affect the yield and quality of crops and pose human health threats when these ions accumulate in edible organs. The Ca2+/H+ exchanger (CAX) family is a class of transporters that mediate the transmembrane transport of both Ca2+ and metal ions, and they are widely involved in regulating plant growth and development and stress responses. Here, we cloned an AtCAX2 ortholog, MdCAX2L-2, from apple. It is constitutively expressed in various apple tissues and significantly induced by Ca2+ and Ba2+ treatments. The MdCAX2L-2 protein is located in the vacuolar membrane in both plant and yeast cells. Overexpression of MdCAX2L-2 enhanced the tolerance of the yeast mutant K667 to high concentrations of Ca2+ and Ba2+. In addition, the role of MdCAX2L-2 in modulating Ba2+ tolerance was identified using MdCAX2L-2-overexpressing transgenic Arabidopsis plants and apple calli. Comparison of growth phenotypes and stress-related physiological indexes under BaCl2 treatment indicated that MdCAX2L-2 could enhance the Ba2+ tolerance of plants by promoting Ba2+ compartmentalization into the vacuoles and eliminating excess ROS. Our results provide insights that will aid future studies examining the function of CAX proteins in regulating stress tolerance in fruit crops, as well as their underlying mechanisms.


Assuntos
Arabidopsis , Malus , Humanos , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo , Íons/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
14.
Plant Physiol Biochem ; 207: 108371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271863

RESUMO

Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 µM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.


Assuntos
Acetatos , Ciclopentanos , Malus , Oxilipinas , Malus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas , Homeostase , Doenças das Plantas/microbiologia
15.
Gene ; 904: 148164, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38224923

RESUMO

C2H2-type zinc finger proteins are one of the most widely studied families in plants and play important roles in abiotic stress responses. In the present study, the physicochemical properties, chromosomal locations, evolutionary relationships, and gene structures of 54 C2H2 zinc finger protein (ZFP) family members were analyzed in apple. The MdC2H2-ZFP genes were phylogenetically clustered into seven subfamilies distributed in different densities on 16 chromosomes. The RNA-seq data from various tissues revealed that MdC2H2-ZFPs differentially expressed among root, stem, leaf, flower, and fruits. Quantitative analysis of its expression characteristics showed that the MdC2H2-ZFP genes were rapidly induced as exposure to abiotic stresses such as drought, salt and low temperature etc. Under drought stress, the expression of eight members was significantly up-regulated, and the highest was obtained from MdC2H2-17; as exposure to salt stress, nine MdC2H2-ZFPs was obviously up-regulated, with the highest expression of MdC2H2-13; and under low temperature stress, the expression of seven members was highly up-regulated, and MdC2H2-13 also demonstrated the highest expression which is same as the case under salt stress. Therefore, some members of MdC2H2-ZFP gene family considerably involve in the multiple abiotic stress responses, which may better understand the function of this family and facilitate the breeding of apple for stress tolerance.


Assuntos
Dedos de Zinco CYS2-HIS2 , Malus , Dedos de Zinco CYS2-HIS2/genética , Malus/genética , Malus/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genética , Filogenia , Dedos de Zinco/genética
16.
Plant Physiol ; 194(4): 2755-2770, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235781

RESUMO

Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.


Assuntos
Ascomicetos , Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Glutamina/metabolismo , Valina/metabolismo , Transdução de Sinais , Doenças das Plantas/genética
17.
J Integr Plant Biol ; 66(2): 265-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284786

RESUMO

Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.


Assuntos
Ciclopentanos , Malus , Oxilipinas , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224320

RESUMO

The level of cadmium (Cd) accumulation in orchard soils is increasing, and excess Cd will cause serious damage to plants. Melatonin is a potent natural antioxidant and has a potential role in alleviating Cd stress. This study aimed to investigate the effects of exogenous melatonin on a root endophyte bacteria community and metabolite composition under Cd stress. The results showed that melatonin significantly scavenged the reactive oxygen species and restored the photosynthetic system (manifested by the improved photosynthetic parameters, total chlorophyll content and the chlorophyll fluorescence parameters (Fv/Fm)), increased the activity of antioxidant enzymes (the activities of catalase, superoxide dismutase, peroxidase and ascorbate oxidase) and reduced the concentration of Cd in the roots and leaves of apple plants. High-throughput sequencing showed that melatonin increased the endophytic bacterial community richness significantly and changed the community structure under Cd stress. The abundance of some potentially beneficial endophytic bacteria (Ohtaekwangia, Streptomyces, Tabrizicola and Azovibrio) increased significantly, indicating that the plants may absorb potentially beneficial microorganisms to resist Cd stress. The metabolomics results showed that melatonin significantly changed the composition of root metabolites, and the relative abundance of some metabolites decreased, suggesting that melatonin may resist Cd stress by depleting root metabolites. In addition, co-occurrence network analysis indicated that some potentially beneficial endophytes may be influenced by specific metabolites. These results provide a theoretical basis for studying the effects of melatonin on the endophytic bacterial community and metabolic composition in apple plants.


Assuntos
Malus , Melatonina , Melatonina/farmacologia , Antioxidantes/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Malus/metabolismo , Clorofila/metabolismo
19.
J Sci Food Agric ; 104(3): 1621-1629, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37827991

RESUMO

BACKGROUND: Changes in apple fruit quality indices in response to foliar spray with 24-epibrassinolide (EBL) at 0 and 1 µmol L-1 and methyl jasmonate (MeJA) at 0 and 0.5 µmol L-1 , as well as the combination of these phytohormones, were investigated at harvest and during cold storage. RESULTS: Both phytohormones synergistically enhanced the fruit firmness, specific weight, size, fresh weight, water content, total antioxidant activity, total phenolics, ascorbic acid, total anthocyanins, total soluble solids/titratable acidity ratio and precocity. In addition, the fruit abscission pattern was changed in response to different treatments. Treated fruit exhibited lower weight loss and internal breakdown symptoms and higher total soluble solids index, firmness and phytochemicals during cold storage. A negative correlation was seen between fruit mass, firmness, specific weight, antioxidant activity, total phenolics and vitamin C content with internal breakdown occurrence and weight loss. CONCLUSION: Foliar spray with EBL and MeJA during the growth season is a good environmental friendly and safe method for enhancing the apple fruit different quality parameters, marketability and postharvest life. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Malus , Antioxidantes/análise , Malus/metabolismo , Antocianinas/análise , Reguladores de Crescimento de Plantas/metabolismo , Ácido Ascórbico/análise , Frutas/química , Redução de Peso
20.
Plant J ; 117(5): 1413-1431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038980

RESUMO

During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. ß-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.


Assuntos
Malus , Malus/metabolismo , Frutas/metabolismo , Etilenos/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...